Existing knowledge distillation methods on graph neural networks (GNNs) are almost offline, where the student model extracts knowledge from a powerful teacher model to improve its performance. However, a pre-trained teacher model is not always accessible due to training cost, privacy, etc. In this paper, we propose a novel online knowledge distillation framework to resolve this problem. Specifically, each student GNN model learns the extracted local structure from another simultaneously trained counterpart in an alternating training procedure. We further develop a cross-layer distillation strategy by aligning ahead one student layer with the layer in different depth of another student model, which theoretically makes the structure information spread over all layers. Experimental results on five datasets including PPI, Coauthor-CS/Physics and Amazon-Computer/Photo demonstrate that the student performance is consistently boosted in our collaborative training framework without the supervision of a pre-trained teacher model. In addition, we also find that our alignahead technique can accelerate the model convergence speed and its effectiveness can be generally improved by increasing the student numbers in training. Code is available: https://github.com/GuoJY-eatsTG/Alignahead


翻译:平面神经网络(GNNs)的现有知识蒸馏方法几乎离线,学生模型从强大的教师模型中提取知识,以提高其绩效。然而,由于培训成本、隐私等原因,未受过培训的教师模型并非总能获得。我们在本文件中提议了一个新的在线知识蒸馏框架来解决这一问题。具体地说,每个学生GNNS模型在交替培训程序中从另一个同时培训的对应方中学习提取的地方结构。我们进一步制定跨层蒸馏战略,将一个学生层与另一个不同深度的学生模型的层相匹配,从理论上将结构信息传播到所有层次。五个数据集的实验结果,包括PPI、CS/Physics和Amazon-Computer/Photo,表明学生的表现在不经过事先培训的教师模型监督的情况下,在我们的协作培训框架中不断得到提升。此外,我们还发现,我们的校准技术可以加快模型的趋同速度,其效力可以通过增加培训中的学生人数来普遍提高。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月22日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2021年2月4日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2022年6月22日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2021年2月4日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员