The deep convolutional neural networks (CNNs) using attention mechanism have achieved great success for dynamic scene deblurring. In most of these networks, only the features refined by the attention maps can be passed to the next layer and the attention maps of different layers are separated from each other, which does not make full use of the attention information from different layers in the CNN. To address this problem, we introduce a new continuous cross-layer attention transmission (CCLAT) mechanism that can exploit hierarchical attention information from all the convolutional layers. Based on the CCLAT mechanism, we use a very simple attention module to construct a novel residual dense attention fusion block (RDAFB). In RDAFB, the attention maps inferred from the outputs of the preceding RDAFB and each layer are directly connected to the subsequent ones, leading to a CRLAT mechanism. Taking RDAFB as the building block, we design an effective architecture for dynamic scene deblurring named RDAFNet. The experiments on benchmark datasets show that the proposed model outperforms the state-of-the-art deblurring approaches, and demonstrate the effectiveness of CCLAT mechanism. The source code is available on: https://github.com/xjmz6/RDAFNet.


翻译:使用关注机制的深层革命神经网络(CNNs)在动态场景布局上取得了巨大成功。在大多数这些网络中,只有通过关注地图改进的特征才能被传送到下一层,不同层的注意地图相互分离,而不同层的注意地图没有充分利用CNN不同层的注意信息。为解决这一问题,我们引入了新的连续的跨层关注传输(CCLAT)机制,可以利用来自所有革命层的高层关注信息。基于CCLAT机制,我们使用一个非常简单的关注模块来构建一个新的残余密集关注聚变块(RDAFBB)。在RDAFB中,从先前的RDAFB和每个层的产出中推断出的注意地图与随后的图直接相连,从而形成CRLAT机制。我们以RDAFBB作为建筑块,我们设计了一个有效的动态场景解冻结构,名为RDAFAFNet。基准数据集实验显示,拟议的模型超越了国家-艺术脱布拉林方法,并展示了CCAF/RDRD机制的有效性。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员