Singular source terms in sub-diffusion equations may lead to the unboundedness of solutions, which will bring a severe reduction of convergence order of existing time-stepping schemes. In this work, we propose two efficient time-stepping schemes for solving sub-diffusion equations with a class of source terms mildly singular in time. One discretization is based on the Gr{\"u}nwald-Letnikov and backward Euler methods. First-order error estimate with respect to time is rigorously established for singular source terms and nonsmooth initial data. The other scheme derived from the second-order backward differentiation formula (BDF) is proved to possess second-order accuracy in time. Further, piecewise linear finite element and lumped mass finite element discretizations in space are applied and analyzed rigorously. Numerical investigations confirm our theoretical results.
翻译:分扩散方程式中的单源术语可能导致解决方案的无约束性,这将大大降低现有时间步骤办法的趋同顺序。 在这项工作中,我们提出了两种有效的时间步骤计划,以解决分扩散方程式,用一种轻度单数的源名解决次扩散方程式,一种分解基于Gr~'u}nwald-Letnikov和落后的Euler方法。对单源术语和非单向初始数据严格确定了时间的第一阶误差估计。由二阶后向偏差公式(BDF)产生的另一个方案证明在时间上具有第二阶级准确性。此外,对空间的片状线性有限元素和包状质量有限元素分解进行了严格的应用和分析。数字调查证实了我们的理论结果。