We use local symplectic Lie groupoids to construct Poisson integrators for generic Poisson structures. More precisely, recursively obtained solutions of a Hamilton-Jacobi-like equation are interpreted as Lagrangian bisections in a neighborhood of the unit manifold, that, in turn, give Poisson integrators. We also insist on the role of the Magnus formula, in the context of Poisson geometry, for the backward analysis of such integrators.
翻译:我们用本地的共振利奥类集成器构建普瓦森(Poisson)通用结构集成器。 更确切地说,循环获得的类似汉密尔顿-贾科比等式的解决方案被解释为单位方块附近拉格朗加的两分形,这反过来又给了普瓦森集成器。 我们还坚持马格努斯公式在普瓦森几何学中的作用,用于对此类集成器进行后向分析。