This paper introduces an $hp$-adaptive multi-element stochastic collocation method, which additionally allows to re-use existing model evaluations during either $h$- or $p$-refinement. The collocation method is based on weighted Leja nodes. After $h$-refinement, local interpolations are stabilized by adding Leja nodes on each newly created sub-element in a hierarchical manner. A dimension-adaptive algorithm is employed for local $p$-refinement. The suggested multi-element stochastic collocation method is employed in the context of forward and inverse uncertainty quantification to handle non-smooth or strongly localised response surfaces. Comparisons against existing multi-element collocation schemes and other competing methods in five different test cases verify the advantages of the suggested method in terms of accuracy versus computational cost.
翻译:本文引入了一种以美元为单位的适应性多元素混合配置法,该方法还允许在以美元或美元为单位的精炼期间重新使用现有的模型评估。合用法以加权Leja节点为基础。在以美元为单位的精炼后,通过在每个新创建的子元素上以等级方式添加Leja节点来稳定地方的内插法。对当地单位的精炼采用了维度适应性算法。建议的多元素混合配置法用于前方和反向不确定性量化,以处理非移动或高度本地化的反应表面。在五个不同的测试案例中,与现有的多元素合用法和其他竞合方法的比较,可以验证所建议的方法在准确性和计算成本方面的优势。