This paper focuses on numerical approximation for fractional powers of elliptic operators on $2$-d manifolds. Firstly, parametric finite element method is employed to discretize the original problem. We then approximate fractional powers of the discrete elliptic operator by the product of rational functions, each of which is a diagonal Pad\'e approximant for corresponding power function. Rigorous error analysis is carried out and sharp error bounds are presented which show that the scheme is robust for $\alpha\rightarrow 0^+$ and $\alpha \rightarrow 1^-$. The cost of the proposed algorithm is solving some elliptic problems. Since the approach is exponentially convergent with respect to the number of solves, it is very efficient. Some numerical tests are given to confirm our theoretical analysis and the robustness of the algorithm.
翻译:本文侧重于对超离层操作员在$$2d 元元上的分数功率的数值近似值。 首先,使用参数限制元素法将原始问题分解开来。 然后,我们用理性函数的产物来估计离散的椭圆体操作员的分数能力, 每种函数都是对应功率函数的对角帕德/ e adroximant 。 进行了严格的错误分析, 并展示了尖锐的错误界限, 这表明这个方案对$\alpha\rightrow 0 ⁇ $和$\alpha\ rightrowr $ $1 ⁇ - $ $ 。 提议的算法的成本是解决一些椭圆体问题。 由于这个方法在解算法的数量上具有指数的趋同性, 它非常高效。 提供了一些数字测试, 以证实我们的理论分析和算法的稳健性。