In this paper, we study the non-asymptotic and asymptotic performances of the optimal robust policy and value function of robust Markov Decision Processes(MDPs), where the optimal robust policy and value function are solved only from a generative model. While prior work focusing on non-asymptotic performances of robust MDPs is restricted in the setting of the KL uncertainty set and $(s,a)$-rectangular assumption, we improve their results and also consider other uncertainty sets, including $L_1$ and $\chi^2$ balls. Our results show that when we assume $(s,a)$-rectangular on uncertainty sets, the sample complexity is about $\widetilde{O}\left(\frac{|\mathcal{S}|^2|\mathcal{A}|}{\varepsilon^2\rho^2(1-\gamma)^4}\right)$. In addition, we extend our results from $(s,a)$-rectangular assumption to $s$-rectangular assumption. In this scenario, the sample complexity varies with the choice of uncertainty sets and is generally larger than the case under $(s,a)$-rectangular assumption. Moreover, we also show that the optimal robust value function is asymptotic normal with a typical rate $\sqrt{n}$ under $(s,a)$ and $s$-rectangular assumptions from both theoretical and empirical perspectives.


翻译:在本文中,我们研究了强健的马可夫决策程序(MDPs)的最佳稳健政策和价值功能的非自然和无自然表现。 稳健的马可夫决策程序(MDPs)的最佳稳健政策和价值功能只能从基因模型中解决。 虽然在设定 KL 不确定性组和$(a) 美元(recal)2 (rho)2 (rho)2 (1-\gamma) right (美元) 时,我们研究了其结果,并考虑了其他不确定性组,包括1美元和2美元。我们的结果显示,当我们假设在不确定性组中假定美元(s)美元(a) 美元(recoloral-retagal) 时,抽样复杂性大约是 $(ocloblittilde) {O\\ mathcal{S\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

1
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员