Counterfactual explanations are usually generated through heuristics that are sensitive to the search's initial conditions. The absence of guarantees of performance and robustness hinders trustworthiness. In this paper, we take a disciplined approach towards counterfactual explanations for tree ensembles. We advocate for a model-based search aiming at "optimal" explanations and propose efficient mixed-integer programming approaches. We show that isolation forests can be modeled within our framework to focus the search on plausible explanations with a low outlier score. We provide comprehensive coverage of additional constraints that model important objectives, heterogeneous data types, structural constraints on the feature space, along with resource and actionability restrictions. Our experimental analyses demonstrate that the proposed search approach requires a computational effort that is orders of magnitude smaller than previous mathematical programming algorithms. It scales up to large data sets and tree ensembles, where it provides, within seconds, systematic explanations grounded on well-defined models solved to optimality.
翻译:反事实解释通常是通过对搜索初始条件敏感的超自然学产生的。 缺乏业绩和稳健性保障会妨碍可信度。 在本文中,我们对树群的反事实解释采取有纪律的做法。 我们主张以模型为基础的搜索,旨在“最佳”解释,并提出有效的混合整数编程方法。 我们表明,孤立森林可以在我们的框架内建模,以低差分集中寻找可信的解释。 我们全面覆盖了其他制约因素,这些制约因素是:重要目标的模型、不同数据类型、特征空间的结构限制,以及资源和可操作性限制。 我们的实验分析表明,拟议的搜索方法需要比以往数学编程算法规模小的计算努力。 它向大型数据集和树群缩放,在几秒钟内提供系统的解释,其依据的明确界定模型可以达到最佳性。