Clothes grasping and unfolding is a core step in robotic-assisted dressing. Most existing works leverage depth images of clothes to train a deep learning-based model to recognize suitable grasping points. These methods often utilize physics engines to synthesize depth images to reduce the cost of real labeled data collection. However, the natural domain gap between synthetic and real images often leads to poor performance of these methods on real data. Furthermore, these approaches often struggle in scenarios where grasping points are occluded by the clothing item itself. To address the above challenges, we propose a novel Bi-directional Fractal Cross Fusion Network (BiFCNet) for semantic segmentation, enabling recognition of graspable regions in order to provide more possibilities for grasping. Instead of using depth images only, we also utilize RGB images with rich color features as input to our network in which the Fractal Cross Fusion (FCF) module fuses RGB and depth data by considering global complex features based on fractal geometry. To reduce the cost of real data collection, we further propose a data augmentation method based on an adversarial strategy, in which the color and geometric transformations simultaneously process RGB and depth data while maintaining the label correspondence. Finally, we present a pipeline for clothes grasping and unfolding from the perspective of semantic segmentation, through the addition of a strategy for grasp point selection from segmentation regions based on clothing flatness measures, while taking into account the grasping direction. We evaluate our BiFCNet on the public dataset NYUDv2 and obtained comparable performance to current state-of-the-art models. We also deploy our model on a Baxter robot, running extensive grasping and unfolding experiments as part of our ablation studies, achieving an 84% success rate.


翻译:暂无翻译

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员