Partitioning a polygonal mesh into meaningful parts can be challenging. Many applications require decomposing such structures for further processing in computer graphics. In the last decade, several methods were proposed to tackle this problem, at the cost of intensive computational times. Recently, machine learning has proven to be effective for the segmentation task on 3D structures. Nevertheless, these state-of-the-art methods are often hardly generalizable and require dividing the learned model into several specific classes of objects to avoid overfitting. We present a data-driven approach leveraging deep learning to encode a mapping function prior to mesh segmentation for multiple applications. Our network reproduces a neighborhood map using our knowledge of the \textsl{Shape Diameter Function} (SDF) method using similarities among vertex neighborhoods. Our approach is resolution-agnostic as we downsample the input meshes and query the full-resolution structure solely for neighborhood contributions. Using our predicted SDF values, we can inject the resulting structure into a graph-cut algorithm to generate an efficient and robust mesh segmentation while considerably reducing the required computation times.
翻译:暂无翻译