This paper explores the fundamental limits of Integrated Sensing and Communication (ISAC) in a more realistic setting compared to previous literature when the Base Staion (BS) has only statistical CSI of the communication user rather than full CSI. We analyze a monostatic setting where the BS performs multi-target Angle of Arrival (AoA) estimation while simultaneously communicating with one of the targets. We assume that the BS has statistical CSI about all AoAs, with less uncertainty in the AoA of the communication receiver. The communication receiver is assumed to have perfect CSI. Utilizing a Bayesian Cram\'er-Rao Bound (BCRB) framework to characterize the fundamental limits of sensing under minimum mean square error (MMSE) criteria, we derive achievable BCRB-rate trade-off regions. Our approach introduces a number of transmission strategies that share power across sensing and communication beams over a coherence time. Our analysis reveals that beam allocation strategies leveraging the principal eigenvectors of the target-specific sensing matrices minimize individual AoA estimation errors, while strategies balancing sensing and communication directions optimize joint estimation performance at the cost of individual accuracy. We demonstrate that leveraging updated BCRB-based sensing information for the communication receiver, due to its lower channel uncertainty, enables significantly improved communication rates.


翻译:本文探讨了与现有文献相比更现实场景下集成感知与通信(ISAC)的基本性能极限,即基站仅掌握通信用户的统计CSI而非完整CSI。我们分析了一种单基地配置,其中基站执行多目标到达角(AoA)估计,同时与其中一个目标进行通信。假设基站掌握所有AoA的统计CSI,其中通信接收机的AoA不确定性较低。假定通信接收机具有完美CSI。利用贝叶斯克拉美-罗界(BCRB)框架刻画最小均方误差(MMSE)准则下感知的基本极限,我们推导了可达的BCRB-速率权衡区域。本方法提出了若干传输策略,在相干时间内将功率分配于感知波束与通信波束之间。分析表明:利用目标专用感知矩阵主特征向量的波束分配策略可最小化单个AoA估计误差,而平衡感知与通信方向的策略则以牺牲个体精度为代价优化联合估计性能。我们证明,由于通信接收机信道不确定性较低,利用基于更新BCRB的感知信息能显著提升通信速率。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员