We derive a thermodynamically consistent, non-isothermal, hydrodynamic model for incompressible binary fluids following the generalized Onsager principle and Boussinesq approximation. This model preserves not only the volume of each fluid phase but also the positive entropy production rate under thermodynamically consistent boundary conditions. Guided by the thermodynamical consistency of the model, a set of second order structure-preserving numerical algorithms are devised to solve the governing partial differential equations along with consistent boundary conditions in the model, which preserve the entropy production rate as well as the volume of each fluid phase at the discrete level. Several numerical simulations are carried out using an efficient adaptive time-stepping strategy based on one of the structure-preserving schemes to simulate the Rayleigh-B\'{e}nard convection in the binary fluid and interfacial dynamics between two immiscible fluids under competing effects of the temperature gradient, gravity, and interfacial forces. Roll cell patterns and thermally induced mixing of binary fluids are observed in a rectangular region with insulated lateral boundaries and vertical ones with imposed temperature difference. Long time simulations of interfacial dynamics are performed demonstrating robust results of new structure-preserving schemes.


翻译:我们根据通用的Onsager原则以及Boussinesq近似法,为不压缩的二进制液体制作一种热动力一致、非热、流体动力模型,这种模型不仅保存每个流体阶段的体积,而且在热动力一致的边界条件下保持正的酶产速率。在模型的热动力一致性的指导下,设计了一套第二顺序结构保存数字算法,以在温度梯度、重力和干涉力的相互竞争效应下,解决调节的局部差异方程和一致的边界条件,从而在离散一级保持酶生产率和每个流体的体积。在重心区域,利用基于结构保留计划之一的高效适应时间步法,进行若干数字模拟,以模拟Rayleg-B\{ennard convationalction介质流体和两种不相近于温度梯度、重力和阻力的流体结构。在变压的后方位模型中观察到了硬细胞模式和二流体流体液的热导混合。在变异的后期结构中,进行了若干次测测测测测测测测测测,并测测测测测了长期温度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员