We introduce two new lowest order methods, a mixed method, and a hybrid Discontinuous Galerkin (HDG) method, for the approximation of incompressible flows. Both methods use divergence-conforming linear Brezzi-Douglas-Marini space for approximating the velocity and the lowest order Raviart-Thomas space for approximating the vorticity. Our methods are based on the physically correct viscous stress tensor of the fluid, involving the symmetric gradient of velocity (rather than the gradient), provide exactly divergence-free discrete velocity solutions, and optimal error estimates that are also pressure robust. We explain how the methods are constructed using the minimal number of coupling degrees of freedom per facet. The stability analysis of both methods are based on a Korn-like inequality for vector finite elements with continuous normal component. Numerical examples illustrate the theoretical findings and offer comparisons of condition numbers between the two new methods.
翻译:我们引入了两种新的最低阶方法,一种是混合方法,另一种是混合间断有限元法(HDG),用于逼近不可压缩流动。这两种方法都使用散度一致的Brezzi-Douglas-Marini线性空间逼近速度和最低阶Raviart-Thomas空间逼近涡度。我们的方法基于液体的物理上正确的粘性应力张量,涉及速度的对称梯度(而不是梯度),提供精确的离散速度解,并具有压力依赖的最优误差估计。我们解释了如何使用每个面元的最小耦合自由度构建方法。这两种方法的稳定性分析基于带有连续法向量分量的向量有限元的类Korn不等式。数值实验说明了理论发现,并提供了新方法之间条件数的比较。