The dynamics of neuron populations during diverse tasks often evolve on low-dimensional manifolds. However, it remains challenging to discern the contributions of geometry and dynamics for encoding relevant behavioural variables. Here, we introduce an unsupervised geometric deep learning framework for representing non-linear dynamical systems based on statistical distributions of local phase portrait features. Our method provides robust geometry-aware or geometry-agnostic representations for the unbiased comparison of dynamics based on measured trajectories. We demonstrate that our statistical representation can generalise across neural network instances to discriminate computational mechanisms, obtain interpretable embeddings of neural dynamics in a primate reaching task with geometric correspondence to hand kinematics, and develop a decoding algorithm with state-of-the-art accuracy. Our results highlight the importance of using the intrinsic manifold structure over temporal information to develop better decoding algorithms and assimilate data across experiments.
翻译:在不同任务中,神经元群体的动力学通常在低维流形上演化。然而,鉴别几何和动力学对编码相关行为变量的贡献仍然具有挑战性。在这里,我们介绍了一种基于局部相图特征的统计分布的无监督几何深度学习框架,用于表示非线性动力学系统。我们的方法提供了健壮的几何感知或几何不可知的表示,以便基于测量轨迹的无偏比较动态。我们证明了我们的统计表示可以横跨神经网络实例进行推广,以区分计算机制,在灵长类到达任务中获得了解释性的神经动力学嵌入,具有与手势运动学的几何对应,并且开发了具有最先进准确性的解码算法。我们的结果强调了使用内在流形结构而非时间信息来开发更好的解码算法和在实验之间同化数据的重要性。