Wearable biosignal processing applications are driving significant progress toward miniaturized, energy-efficient Internet-of-Things solutions for both clinical and consumer applications. However, scaling toward high-density multi-channel front-ends is only feasible by performing data processing and machine Learning (ML) near-sensor through energy-efficient edge processing. To tackle these challenges, we introduce BioGAP, a novel, compact, modular, and lightweight (6g) medical-grade biosignal acquisition and processing platform powered by GAP9, a ten-core ultra-low-power SoC designed for efficient multi-precision (from FP to aggressively quantized integer) processing, as required for advanced ML and DSP. BioGAPs form factor is 16x21x14 mm$^3$ and comprises two stacked PCBs: a baseboard integrating the GAP9 SoC, a wireless Bluetooth Low Energy (BLE) capable SoC, a power management circuit, and an accelerometer; and a shield including an analog front-end (AFE) for ExG acquisition. Finally, the system also includes a flexibly placeable photoplethysmogram (PPG) PCB with a size of 9x7x3 mm$^3$ and a rechargeable battery ($\phi$ 12x5 mm$^2$). We demonstrate BioGAP on a Steady State Visually Evoked Potential (SSVEP)-based Brain-Computer Interface (BCI) application. We achieve 3.6 uJ/sample in streaming and 2.2 uJ/sample in onboard processing mode, thanks to an efficiency on the FFT computation task of 16.7 Mflops/s/mW with wireless bandwidth reduction of 97%, within a power budget of just 18.2 mW allowing for an operation time of 15 h.
翻译:暂无翻译