Crowdsourcing is a favorable computing paradigm for processing computer-hard tasks by harnessing human intelligence. However, generic crowdsourcing systems may lead to privacy-leakage through the sharing of worker data. To tackle this problem, we propose a novel approach, called iFedCrowd (incentive-boosted Federated Crowdsourcing), to manage the privacy and quality of crowdsourcing projects. iFedCrowd allows participants to locally process sensitive data and only upload encrypted training models, and then aggregates the model parameters to build a shared server model to protect data privacy. To motivate workers to build a high-quality global model in an efficacy way, we introduce an incentive mechanism that encourages workers to constantly collect fresh data to train accurate client models and boosts the global model training. We model the incentive-based interaction between the crowdsourcing platform and participating workers as a Stackelberg game, in which each side maximizes its own profit. We derive the Nash Equilibrium of the game to find the optimal solutions for the two sides. Experimental results confirm that iFedCrowd can complete secure crowdsourcing projects with high quality and efficiency.
翻译:众包是利用人类智能处理计算机硬性任务的有利计算模式。 然而, 通用众包系统可能会通过共享工人数据导致隐私泄露。 为了解决这个问题, 我们提议了一种创新方法, 叫做 iFedCrowd( 奖励- 刺激- 联邦众包), 来管理众包项目的隐私和质量。 iFedCrowd 允许参与者在当地处理敏感数据, 只上传加密培训模式, 然后汇总模型参数, 以构建一个共享服务器模型来保护数据隐私。 为了激励工人建立一个高效的高质量全球模型, 我们引入了一个激励机制, 鼓励工人不断收集新数据, 以培训准确的客户模型, 并提升全球模型培训。 我们将众包平台与参与的工人之间的激励性互动模式作为斯塔克尔伯格游戏, 让双方都能最大限度地获得自身的利益。 我们从游戏的Nash Equilibrium 中获取了游戏的模型, 以找到最佳解决方案来保护数据隐私。 实验结果证实iFedCrowd能够以高质量和高效的方式完成群包项目。