Human-aware robot navigation promises a range of applications in which mobile robots bring versatile assistance to people in common human environments. While prior research has mostly focused on modeling pedestrians as independent, intentional individuals, people move in groups; consequently, it is imperative for mobile robots to respect human groups when navigating around people. This paper explores learning group-aware navigation policies based on dynamic group formation using deep reinforcement learning. Through simulation experiments, we show that group-aware policies, compared to baseline policies that neglect human groups, achieve greater robot navigation performance (e.g., fewer collisions), minimize violation of social norms and discomfort, and reduce the robot's movement impact on pedestrians. Our results contribute to the development of social navigation and the integration of mobile robots into human environments.
翻译:人类觉悟的机器人导航可以提供多种应用,使移动机器人在人类共同环境中为人们带来多方面的帮助。虽然先前的研究主要侧重于将行人作为独立、有意的个人进行模拟,但人们可以集体移动;因此,移动机器人在绕人行驶时必须尊重人类群体。本文探讨学习群体觉悟的导航政策,这种政策的基础是利用深层强化学习进行动态群体组建。我们通过模拟实验,表明集体觉悟政策与忽视人类群体的基线政策相比,能够实现更大的机器人导航性能(例如减少碰撞),最大限度地减少对社会规范的违反和不舒适,并减少机器人对行人的行动影响。我们的成果有助于社会导航的发展和移动机器人融入人类环境。