Change point detection has recently gained popularity as a method of detecting performance changes in software due to its ability to cope with noisy data. In this paper we present Hunter, an open source tool that automatically detects performance regressions and improvements in time-series data. Hunter uses a modified E-divisive means algorithm to identify statistically significant changes in normally-distributed performance metrics. We describe the changes we made to the E-divisive means algorithm along with their motivation. The main change we adopted was to replace the significance test using randomized permutations with a Student's t-test, as we discovered that the randomized approach did not produce deterministic results, at least not with a reasonable number of iterations. In addition we've made tweaks that allow us to find change points the original algorithm would not, such as two nearby changes. For evaluation, we developed a method to generate real timeseries, but with artificially injected changes in latency. We used these data sets to compare Hunter against two other well known algorithms, PELT and DYNP. Finally, we conclude with lessons we've learned supporting Hunter across teams with individual responsibility for the performance of their project.


翻译:变化点检测最近作为一种检测软件性能变化的方法越来越受欢迎, 因为它能够应对繁琐的数据。 在本文中, 我们向亨特展示了一个开放源码工具, 自动检测性能回归和时间序列数据的改进。 亨特使用经修改的电子二维算法来识别正常分布性性能指标中具有统计意义的变化。 我们描述了我们对电子二维手段算法及其动机所作的修改。 我们采用的主要变化是用随机调整与学生的测试来取代重要测试, 因为我们发现随机化方法没有产生确定性结果, 至少没有合理数量的迭代。 此外, 我们做了调整, 使我们能找到原始算法不会发生的变化点, 比如两个相近的变化。 关于评估, 我们开发了一种方法来生成真实的时间序列, 但是在延时性方面有人工注射的变化。 我们用这些数据组来比较杭特与其他两个众所周知的算法, PELT 和 DYNP 。 最后, 我们用我们学到的教训来支持杭特 跨个人团队的业绩。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员