We present a methodology to automatically compute worst-case performance bounds for a large class of first-order decentralized optimization algorithms. These algorithms aim at minimizing the average of local functions that are distributed across a network of agents. They typically combine local computations and consensus steps. Our methodology is based on the approach of Performance Estimation Problem (PEP), which allows computing the worst-case performance and a worst-case instance of first-order optimization algorithms by solving an SDP. We propose two ways of representing consensus steps in PEPs, which allow writing and solving PEPs for decentralized optimization. The first formulation is exact but specific to a given averaging matrix. The second formulation is a relaxation but provides guarantees valid over an entire class of averaging matrices, characterized by their spectral range. This formulation often allows recovering a posteriori the worst possible averaging matrix for the given algorithm. We apply our methodology to three different decentralized methods. For each of them, we obtain numerically tight worst-case performance bounds that significantly improve on the existing ones, as well as insights about the parameters tuning and the worst communication networks.
翻译:我们提出了一个方法来自动计算一等一级分散化优化算法的最坏情况。这些算法旨在最大限度地减少在代理人网络中分布的当地功能的平均值。这些算法通常将当地计算和协商一致的步骤结合起来。我们的方法基于业绩估计问题(PEP)的方法,这种方法允许通过解决一个SDP来计算最坏情况的业绩和一级优化算法的最坏情况。我们提出了两种方法,在PEP中代表协商一致的步骤,允许为分散化优化而撰写和解决PEP。第一个公式是精确的,但具体针对一个特定的平均矩阵。第二个公式是放松,但为以光谱范围为特征的整个平均矩阵类别提供了有效保障。这种公式往往允许对给定算法的最差的平均矩阵进行修复。我们用的方法对三种不同的分散化方法进行计算。我们每一种方法都得到了数量上紧凑紧的最坏情况,大大改进了现有的参数,以及对参数的调整和最坏通信网络的洞察。</s>