Action Units (AU) are muscular activations used to describe facial expressions. Therefore accurate AU recognition unlocks unbiaised face representation which can improve face-based affective computing applications. From a learning standpoint AU detection is a multi-task problem with strong inter-task dependencies. To solve such problem, most approaches either rely on weight sharing, or add explicit dependency modelling by decomposing the joint task distribution using Bayes chain rule. If the latter strategy yields comprehensive inter-task relationships modelling, it requires imposing an arbitrary order into an unordered task set. Crucially, this ordering choice has been identified as a source of performance variations. In this paper, we present Multi-Order Network (MONET), a multi-task method with joint task order optimization. MONET uses a differentiable order selection to jointly learn task-wise modules with their optimal chaining order. Furthermore, we introduce warmup and order dropout to enhance order selection by encouraging order exploration. Experimentally, we first demonstrate MONET capacity to retrieve the optimal order in a toy environment. Second, we validate MONET architecture by showing that MONET outperforms existing multi-task baselines on multiple attribute detection problems chosen for their wide range of dependency settings. More importantly, we demonstrate that MONET significantly extends state-of-the-art performance in AU detection.
翻译:用于描述面部表达的动作单位( AU) 是用于描述面部表达的肌肉激活。 因此, 准确的 AU 识别会释放没有偏见的面部代表, 可以改善基于面部的情感计算应用程序。 从学习的角度看, AU 检测是一个多任务问题, 具有很强的跨任务依赖性。 要解决这个问题, 多数方法要么依靠使用 Bayes 链规则对联合任务分配进行分解, 要么依赖性建模。 如果后一项战略产生全面的跨任务关系建模, 它需要将一个任意的顺序强加给一个没有顺序的任务设置。 关键是, 这个命令选择已被确定为性能变化的来源。 在本文中, 我们展示多任务网络( MONET) 的多任务网络(MONET) (MONET) (MONET) (MONET) (MONET) (MONET) (MONAW) (MOL) 的多重检测范围, 展示了我们所选择的多功能性能测定的多功能标准。</s>