Decentralized Finance (DeFi) is a system of financial products and services built and delivered through smart contracts on various blockchains. In the past year, DeFi has gained popularity and market capitalization. However, it has also been connected to crime, in particular, various types of securities violations. The lack of Know Your Customer requirements in DeFi poses challenges to governments trying to mitigate potential offending in this space. This study aims to uncover whether this problem is suited to a machine learning approach, namely, whether we can identify DeFi projects potentially engaging in securities violations based on their tokens' smart contract code. We adapt prior work on detecting specific types of securities violations across Ethereum, building classifiers based on features extracted from DeFi projects' tokens' smart contract code. The final logistic regression model achieves a 98.9% F-1 score; the final random forest classifier achieves a 98.6% F1-score. From further feature-level analysis, we find a single feature makes this a highly detectable problem. The high reliance on a single feature means that, at this stage, a complex machine learning model may not be necessary or desirable for this problem. However, this may change as DeFi securities violations become more sophisticated. Another contribution of our study is a new dataset, comprised of (a) a verified ground truth dataset for tokens involved in securities violations and (b) a set of legitimate tokens from a reputable DeFi aggregator. This paper further discusses the potential use of a model like ours by prosecutors in enforcement efforts and connects it to the wider legal context.


翻译:分散金融( DeFi) 是一个金融产品和服务系统,它通过各种供应链的智能合同建立和提供。在过去一年中, DeFi 已经赢得了受欢迎程度和市场资本化。然而,它也与犯罪有关,特别是各类证券违规。 DeFi 缺乏了解客户的要求给政府减少这一空间潜在犯罪带来了挑战。 这项研究旨在发现这一问题是否适合机器学习方法, 即, 我们是否能够发现 DeFi 项目可能根据它们象征的智能合同代码进行证券违规交易。 我们先前在Etheum 发现特定类型的证券违规交易的工作已经获得了普及和市场资本化。 但是, 最终的物流回归模式达到了98.9% F-1分; 最后随机的森林分类者达到了98.6% F1分数。 从进一步的地貌分析中,我们发现一个单一的特征使这个模型类似于一个非常可探测的问题。 高度依赖一个单一的特征意味着,在这个阶段, 复杂的机器学习模式可能没有必要或适宜用于这一阶段。 然而, 最终的回归模型将构成我们一个可靠的数据违约情况。</s>

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
82+阅读 · 2022年7月16日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员