Neither deep neural networks nor symbolic AI alone has approached the kind of intelligence expressed in humans. This is mainly because neural networks are not able to decompose joint representations to obtain distinct objects (the so-called binding problem), while symbolic AI suffers from exhaustive rule searches, among other problems. These two problems are still pronounced in neuro-symbolic AI which aims to combine the best of the two paradigms. Here, we show that the two problems can be addressed with our proposed neuro-vector-symbolic architecture (NVSA) by exploiting its powerful operators on high-dimensional distributed representations that serve as a common language between neural networks and symbolic AI. The efficacy of NVSA is demonstrated by solving the Raven's progressive matrices datasets. Compared to state-of-the-art deep neural network and neuro-symbolic approaches, end-to-end training of NVSA achieves a new record of 87.7% average accuracy in RAVEN, and 88.1% in I-RAVEN datasets. Moreover, compared to the symbolic reasoning within the neuro-symbolic approaches, the probabilistic reasoning of NVSA with less expensive operations on the distributed representations is two orders of magnitude faster. Our code is available at https://github.com/IBM/neuro-vector-symbolic-architectures.


翻译:无论是深心神经网络,还是象征性的AI,都未能触及人类所表现的那种智力。这主要是因为神经网络无法分解联合演示,以获得不同的物体(所谓的约束问题),而象征性的AI则受到详尽的规则搜索等问题。这两个问题在神经-共振的AI中仍然很明显,其目的是将两种模式的最佳结合起来。在这里,我们表明,这两个问题可以通过我们拟议的神经-病毒-共振-共振-共振结构(NVSA)来解决,方法是利用其强大的操作者在作为神经网络和象征性AI之间共同语言的高维分布的演示中进行。NVSA的效力表现在解决雷文的进步矩阵数据集中。与最先进的深神经网络和神经-共振-共振方法相比,NVSA的端对端培训在RAVEN中达到了87.7%的平均准确度记录,在I-RAVEN数据集中达到了88.1 %。此外,与神经-共振-共振-共振-共振-共振-共振-共振数据集中象征性的推理学推理方法相比,我们目前两个级别上较昂贵的系统-CRAB-CRAB-CRAB 的演算系统/CRABRAB 的演算的演算是较快的推。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月25日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员