Total variation (TV) regularization is a popular reconstruction method for ill-posed imaging problems, and particularly useful for applications with piecewise constant targets. However, using TV for medical cone-beam computed X-ray tomography (CBCT) has been limited so far, mainly due to heavy computational loads at clinically relevant 3D resolutions and the difficulty in choosing the regularization parameter. Here an efficient minimization algorithm is presented, combined with a dynamic parameter adjustment based on control theory. The result is a fully automatic 3D reconstruction method running in clinically acceptable time. The input on top of projection data and system geometry is desired degree of sparsity of the reconstruction. This can be determined from an atlas of CT scans, or alternatively used as an easily adjustable parameter with straightforward interpretation.
翻译:暂无翻译