We introduce and implement a method to compute stationary states of nonlinear Schr\''odinger equations on metric graphs. Stationary states are obtained as local minimizers of the nonlinear Schr\''odinger energy at fixed mass. Our method is based on a normalized gradient flow for the energy (i.e. a gradient flow projected on a fixed mass sphere) adapted to the context of nonlinear quantum graphs. We first prove that, at the continuous level, the normalized gradient flow is well-posed, mass-preserving, energy diminishing and converges (at least locally) towards stationary states. We then establish the link between the continuous flow and its discretized version. We conclude by conducting a series of numerical experiments in model situations showing the good performance of the discrete flow to compute stationary states. Further experiments as well as detailed explanation of our numerical algorithm are given in a companion paper.
翻译:我们引入并采用一种方法来计算图示上的非线性Schr\'odinger方程式的固定状态。 固定状态是作为固定质量的非线性Schr\'odinger能量的局部最小化器获得的。 我们的方法是以正常的能量梯度流( 固定质量范围内预测的梯度流)为基础, 适应非线性量子图的背景。 我们首先证明, 在连续水平上, 正常的梯度流是妥善保存的, 质量保护, 能量减少和( 至少是本地的)向固定状态的汇合点。 我们然后在连续流与其离散版本之间建立联系。 我们最后通过在模型情况下进行一系列数字实验, 显示离散流的良好性能, 以计算固定状态。 进一步的实验以及我们数字算法的详细解释, 在一份配套文件中给出 。