The work explores a specific scenario for structural computational optimization based on the following elements: (a) a relaxed optimization setting considering the ersatz (bi-material) approximation, (b) a treatment based on a nonsmoothed characteristic function field as a topological design variable, (c) the consistent derivation of a relaxed topological derivative whose determination is simple, general and efficient, (d) formulation of the overall increasing cost function topological sensitivity as a suitable optimality criterion, and (e) consideration of a pseudo-time framework for the problem solution, ruled by the problem constraint evolution. In this setting, it is shown that the optimization problem can be analytically solved in a variational framework, leading to, nonlinear, closed-form algebraic solutions for the characteristic function, which are then solved, in every time-step, via fixed point methods based on a pseudo-energy cutting algorithm combined with the exact fulfillment of the constraint, at every iteration of the non-linear algorithm, via a bisection method. The issue of the ill-posedness (mesh dependency) of the topological solution, is then easily solved via a Laplacian smoothing of that pseudo-energy. In the aforementioned context, a number of (3D) topological structural optimization benchmarks are solved, and the solutions obtained with the explored closed-form solution method, are analyzed, and compared, with their solution through an alternative level set method. Although the obtained results, in terms of the cost function and topology designs, are very similar in both methods, the associated computational cost is about five times smaller in the closedform solution method this possibly being one of its advantages.


翻译:这项工作探索了基于以下要素的结构计算优化的具体设想:(a) 一种考虑到ersatz(双物质)近似值的放松优化环境;(b) 一种基于非移动特点功能字段的处理,作为一种地形设计变量,(c) 一种以简单、一般和高效的确定法为基础的宽松地貌衍生衍生物的一致衍生物,(d) 将总体增加的成本功能表层敏感性作为适当的最佳性标准,以及(e) 考虑一种由问题制约变化决定的问题解决方案假时间框架。在这种背景下,最优化问题可以在一个类似的变异框架中以分析方式解决,导致一个非线性、封闭式的代数函数功能,然后通过固定的点算法,通过假能源削减算法和确切的制约的履行,通过双线式算法,其顶级解算法的不正确性(依赖性)问题,其表型解决方案的不可靠程度可能在一个变式框架中解决。

0
下载
关闭预览

相关内容

【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2018年11月27日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2018年11月27日
Top
微信扫码咨询专知VIP会员