Spatial search on graphs is one of the most important algorithmic applications of quantum walks. To show that a quantum-walk-based search is more efficient than a random-walk-based search is a difficult problem, which has been addressed in several ways. Usually, graph symmetries aid in the calculation of the algorithm's computational complexity, and Johnson graphs are an interesting class regarding symmetries because they are regular, Hamilton-connected, vertex- and distance-transitive. In this work, we show that spatial search on Johnson graphs by continuous-time quantum walk achieves the Grover lower bound $\pi\sqrt{N}/2$ with success probability $1$ asymptotically for every fixed diameter, where $N$ is the number of vertices. The proof is mathematically rigorous and can be used for other graph classes.
翻译:图形上的空间搜索是量子行走的最重要算法应用之一。 要显示量子行走搜索比随机行走搜索更有效, 是一个困难的问题, 这个问题已经以多种方式解决。 通常, 图形对称有助于计算算法的计算复杂性, 而 Johnson 图形则是关于对称性的一个有趣的类, 因为它们是常规的、 汉密尔顿连接的、 顶端和远程流体。 在这项工作中, 我们通过连续时间量子行走来显示, 约翰逊 图形上的空间搜索能够使每个固定直径的 Grover 下限 $\ pi\ sqrt{N}/2$ 成功概率为1美元, 也就是每个固定直径, 美元是脊椎的数量。 证据在数学上非常严格, 可以用于其他图形类 。