Local Fourier analysis is a commonly used tool for the analysis of multigrid and other multilevel algorithms, providing both insight into observed convergence rates and predictive analysis of the performance of many algorithms. In this paper, for the first time, we adapt local Fourier analysis to examine variants of two- and three-level balancing domain decomposition by constraints (BDDC) algorithms, to better understand the eigenvalue distributions and condition number bounds on these preconditioned operators. This adaptation is based on a modified choice of basis for the space of Fourier harmonics that greatly simplifies the application of local Fourier analysis in this setting. The local Fourier analysis is validated by considering the two dimensional Laplacian and predicting the condition numbers of the preconditioned operators with different sizes of subdomains. Several variants are analyzed, showing the two- and three-level performance of the "lumped" variant can be greatly improved when used in multiplicative combination with a weighted diagonal scaling preconditioner, with weight optimized through the use of LFA.
翻译:Fourier 分析是一个常用的工具,用于分析多格和其他多级算法,对观察到的趋同率进行深入了解,并对许多算法的性能进行预测性分析。在本文件中,我们首次对本地Fourier 分析进行了调整,以审查受制约的两种和三种平衡域分解算法(BDDC)的变异,以更好地了解这些先决条件操作员的二等和三等平衡域分解(BDDC)算法(BDDCC),以更好地了解这些先决条件操作员的二等值分布和条件号界限。这一调整是基于对Fourier 调理法空间基础的修改选择,大大简化了Fourier 本地 Fourier 分析的应用。本地 Fourier 分析通过考虑两个维面的LAFA 和预测具有不同尺寸的前提条件操作员的条件号,验证了本地的Fourier 分析。对几个变量进行了分析,显示“ 疏漏” 变法的二等和三级性能在多相结合时可以大大改进,同时使用加权的二等缩缩缩缩缩缩缩微缩缩缩度前置器,通过LFAFAFAFA得到优化。