Unlike Poker where the action space $\mathcal{A}$ is discrete, differential games in the physical world often have continuous action spaces not amenable to discrete abstraction, rendering no-regret algorithms with $\mathcal{O}(|\mathcal{A}|)$ complexity not scalable. To address this challenge within the scope of two-player zero-sum (2p0s) games with one-sided information, we show that (1) a computational complexity independent of $|\mathcal{A}|$ can be achieved by exploiting the convexification property of incomplete-information games and the Isaacs' condition that commonly holds for dynamical systems, and that (2) the computation of the two equilibrium strategies can be decoupled under one-sidedness of information. Leveraging these insights, we develop an algorithm that successfully approximates the optimal strategy in a homing game. Code available in https://github.com/ghimiremukesh/cams/tree/workshop
翻译:暂无翻译