The multi-user linearly-separable distributed computing problem is considered here, in which $N$ servers help to compute the real-valued functions requested by $K$ users, where each function can be written as a linear combination of up to $L$ (generally non-linear) subfunctions. Each server computes a fraction $\gamma$ of the subfunctions, then communicates a function of its computed outputs to some of the users, and then each user collects its received data to recover its desired function. Our goal is to bound the ratio between the computation workload done by all servers over the number of datasets. To this end, we here reformulate the real-valued distributed computing problem into a matrix factorization problem and then into a basic sparse recovery problem, where sparsity implies computational savings. Building on this, we first give a simple probabilistic scheme for subfunction assignment, which allows us to upper bound the optimal normalized computation cost as $\gamma \leq \frac{K}{N}$ that a generally intractable $\ell_0$-minimization would give. To bypass the intractability of such optimal scheme, we show that if these optimal schemes enjoy $\gamma \leq - r\frac{K}{N}W^{-1}_{-1}(- \frac{2K}{e N r} )$ (where $W_{-1}(\cdot)$ is the Lambert function and $r$ calibrates the communication between servers and users), then they can actually be derived using a tractable Basis Pursuit $\ell_1$-minimization. This newly-revealed connection between distributed computation and compressed sensing opens up the possibility of designing practical distributed computing algorithms by employing tools and methods from compressed sensing.
翻译:这里考虑的是多用户线性分布式分布式计算问题, 在其中, $N 服务器帮助计算由 $K 用户所要求的真实价值的函数, 每个函数可以写成由最多为 $L$( 一般不是线性) 子函数组成的线性组合。 每个服务器计算了一个子函数的分数 $\ gamma$, 然后将其计算输出的函数传达给一些用户, 然后每个用户收集收到的数据, 以恢复其想要的功能。 我们的目标是将所有服务器在数据集数量上完成的计算工作量之间的比值绑在一起。 为此, 我们在这里将实际价值分配的计算函数问题重新写成一个矩阵因子化问题( 一般为非线性) 。 每个服务器计算一个子函数的分数 $\ gammam, 然后向一些用户传递其计算结果的一个函数, 这样我们就可以将最优化的 $\ leq\ liver= $_ r_ r_ r_ r_ limalationalational_ k 和 最优化的系统之间的比重的 $_ $_\\\\\ r_ r_ r_ r_\\ k r_ r_ r_ dal_ dreal_r_r_r_ dreal_ dreal_ k leg- slational=