We consider the problem of designing a succinct data structure for {\it path graphs} (which are a proper subclass of chordal graphs and a proper superclass of interval graphs) on $n$ vertices while supporting degree, adjacency, and neighborhood queries efficiently. We provide the following two solutions for this problem: - an $n \log n+o(n \log n)$-bit succinct data structure that supports adjacency query in $O(\log n)$ time, neighborhood query in $O(d \log n)$ time and finally, degree query in $\min\{O(\log^2 n), O(d \log n)\}$ where $d$ is the degree of the queried vertex. - an $O(n \log^2 n)$-bit space-efficient data structure that supports adjacency and degree queries in $O(1)$ time, and the neighborhood query in $O(d)$ time where $d$ is the degree of the queried vertex. Central to our data structures is the usage of the classical heavy path decomposition by Sleator and Tarjan~\cite{ST}, followed by a careful bookkeeping using an orthogonal range search data structure using wavelet trees~\cite{Makinen2007} among others, which maybe of independent interest for designing succinct data structures for other graph classes.
翻译:我们考虑如何设计一个简洁的数据结构, 用于 {it path path graphs} } (这是适当的 coordal 图表小类和适当的超级间距图类), 以美元为顶点, 同时支持度、 相邻和邻区查询 。 我们为此问题提供了以下两种解决方案 : - $\ log n+o( n log n n) $- 位 简洁的数据结构, 支持 $O( log n) 时间 的对接点查询, 以 $( d log n) 时间和最后, $\ min<unk> O (\ log2 n) 的度查询 。 O( d\ log n) $ 美元 是 被查询的顶点 。 $( log n) 美元 - bit- pit- space- preac 数据结构, 支持 $O(1) 时间 的对 度和 度查询 $( d) 美元) 时间 的邻问题查询 。 $( $d) 是 levelop levelop levelop levelop levelop leas the level leas the sal leastiquestal level level level level level level level</s>