Federated edge learning (FEEL) has attracted much attention as a privacy-preserving paradigm to effectively incorporate the distributed data at the network edge for training deep learning models. Nevertheless, the limited coverage of a single edge server results in an insufficient number of participated client nodes, which may impair the learning performance. In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL), where multiple edge servers are employed to collectively coordinate a large number of client nodes. By exploiting the low-latency communication among edge servers for efficient model sharing, SD-FEEL can incorporate more training data, while enjoying much lower latency compared with conventional federated learning. We detail the training algorithm for SD-FEEL with three main steps, including local model update, intra-cluster, and inter-cluster model aggregations. The convergence of this algorithm is proved on non-independent and identically distributed (non-IID) data, which also helps to reveal the effects of key parameters on the training efficiency and provides practical design guidelines. Meanwhile, the heterogeneity of edge devices may cause the straggler effect and deteriorate the convergence speed of SD-FEEL. To resolve this issue, we propose an asynchronous training algorithm with a staleness-aware aggregation scheme for SD-FEEL, of which, the convergence performance is also analyzed. The simulation results demonstrate the effectiveness and efficiency of the proposed algorithms for SD-FEEL and corroborate our analysis.


翻译:联邦边缘学习(FEEL)作为一种保护隐私的范例,吸引了人们的极大关注,因为这是一种保护隐私的模式,可以有效地将分布在网络边缘的数据纳入网络边缘,用于培训深层学习模式;然而,单一边缘服务器的覆盖范围有限,导致参与的客户节点数量不足,这可能会损害学习绩效;在本文件中,我们调查一种新的感觉框架,即半分散化联邦边缘学习(SD-FEEL),利用多个边缘服务器集体协调大量客户节点;通过利用边缘服务器之间的低延迟通信,有效共享模型共享,SD-FEEL可以纳入更多的培训数据,同时与传统的联邦化学习相比,保持更低的延迟。我们用三个主要步骤详细说明了SD-FEL的培训算法,包括当地模型更新、集群内和集群间模型组合。这一算法的趋同性,证明不依赖和同样分布的(非IID)数据,这也有助于揭示关键参数对培训效率的影响,并提供实用的设计准则。 同时,边缘装置的高度趋同性趋同性(SDFE-L)分析,这会使SD-LA-LA-SDLAGALAG的稳定性产生一种稳定速度。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年10月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员