We propose a new adaptive hypothesis test for polyhedral cone (e.g., monotonicity, convexity) and equality (e.g., parametric, semiparametric) restrictions on a structural function in a nonparametric instrumental variables (NPIV) model. Our test statistic is based on a modified leave-one-out sample analog of a quadratic distance between the restricted and unrestricted sieve NPIV estimators. We provide computationally simple, data-driven choices of sieve tuning parameters and adjusted chi-squared critical values. Our test adapts to the unknown smoothness of alternative functions in the presence of unknown degree of endogeneity and unknown strength of the instruments. It attains the adaptive minimax rate of testing in $L^2$. That is, the sum of its type I error uniformly over the composite null and its type II error uniformly over nonparametric alternative models cannot be improved by any other hypothesis test for NPIV models of unknown regularities. Data-driven confidence sets in $L^2$ are obtained by inverting the adaptive test. Simulations confirm that our adaptive test controls size and its finite-sample power greatly exceeds existing non-adaptive tests for monotonicity and parametric restrictions in NPIV models. Empirical applications to test for shape restrictions of differentiated products demand and of Engel curves are presented.
翻译:我们建议对非参数工具变量(NPIV)模型中的结构功能进行新的适应性假设测试,对非参数工具变量(NPIV)模型中的结构功能限制进行新的适应性假设测试。我们提出的测试统计数据是基于一个经过修改的放假样本,它模拟了限制和不受限制的Sieve NPIV测距之间的二次距离。我们提供了由数据驱动的筛选调试参数和调整的奇异适配关键值的计算性简单、数据驱动的选择。我们的测试适应替代功能的不为人知的平滑性(例如,参数、半参数、半参数)和对等性(例如,对等性、对等性)限制。我们提出的测试基于不为人知、无限制的Sieve NPIV模型中,其类型I的误差与二类的误差是一致的。我们对不为未知的常规模型进行的任何其他假设性测试,通过适应性测试获得以$L%2为美元的数据驱动的置信系通过适应性测试四型模型获得的替代值。它具有适应性弹性的弹性的弹性测试,测试显示我们用于不适应性稳定性测试的弹性产品。