This paper proposes a novel inverse kinematics (IK) solver of articulated robotic systems for path planning. IK is a traditional but essential problem for robot manipulation. Recently, data-driven methods have been proposed to quickly solve the IK for path planning. These methods can handle a large amount of IK requests at once with the advantage of GPUs. However, the accuracy is still low, and the model requires considerable time for training. Therefore, we propose an IK solver that improves accuracy and memory efficiency by utilizing the continuous hidden dynamics of Neural ODE. The performance is compared using multiple robots.


翻译:本文提出了用于路径规划的清晰机器人系统的新颖的反动动能解答器。 IK是机器人操纵的一个传统但必不可少的问题。 最近,提出了数据驱动方法,以快速解决路径规划所需的 IK 。 这些方法可以同时处理大量的 IK 请求,同时利用 GPUs 。 然而, 准确性仍然很低, 模型需要相当长的培训时间。 因此, 我们提出一个 IK 解答器, 利用 Neural ODE 的连续隐藏动态来提高准确性和内存效率。 性能是使用多个机器人比较的。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员