We consider a wireless uplink network consisting of multiple end devices and an access point (AP). Each device monitors a physical process with stochastic arrival of status updates and sends these updates to the AP over a shared channel. The AP aims to schedule the transmissions of these devices to optimize the network-wide information freshness, quantified by the Age of Information (AoI) metric. Due to the stochastic arrival of the status updates at the devices, the AP only has partial observations of system times of the latest status updates at the devices when making scheduling decisions. We formulate such a decision-making problem as a belief Markov Decision Process (belief-MDP). The belief-MDP in its original form is difficult to solve as the dimension of its states can go to infinity and its belief space is uncountable. By leveraging the properties of the status update arrival (i.e., Bernoulli) processes, we manage to simplify the feasible states of the belief-MDP to two-dimensional vectors. Built on that, we devise a low-complexity scheduling policy. We derive upper bounds for the AoI performance of the low-complexity policy and analyze the performance guarantee by comparing its performance with a universal lower bound. Numerical results validate our analyses.
翻译:我们考虑的是由多端装置和一个接入点组成的无线上行链网络。每个装置都监测着一个实际过程,对状态更新进行随机到来,并通过一个共享的频道向AP发送这些更新。AP的目的是安排这些装置的传输,优化全网络信息新鲜度,以信息时代(AoI)的衡量标准加以量化。由于设备状态更新的到来不顺利,AP在做出时间安排决定时只能对设备上最新状态更新的系统时间进行部分观测。我们制定了一个像信仰Markov决定程序(信仰-MDP)这样的决策问题。最初形式的信仰-MDP很难解决,因为其国家的层面可以走向无限,其信仰空间是无法计算的。通过利用状态更新到达(例如,Bernoulolli)进程的特点,我们设法将信仰-MDP的可行状态简化为二维矢量。为此,我们制定了一个低兼容度的时间安排政策。我们通过对AoI的低度性能分析与低度性能对比,我们用低度性能分析来比较其低度性能分析。