In this paper we propose a Deep Learning architecture to approximate diffeomorphisms diffeotopic to the identity. We consider a control system of the form $\dot x = \sum_{i=1}^lF_i(x)u_i$, with linear dependence in the controls, and we use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points. Despite the simplicity of the control system, it has been recently shown that a Universal Approximation Property holds. The problem of minimizing the sum of the training error and of a regularizing term induces a gradient flow in the space of admissible controls. A possible training procedure for the discrete-time neural network consists in projecting the gradient flow onto a finite-dimensional subspace of the admissible controls. An alternative approach relies on an iterative method based on Pontryagin Maximum Principle for the numerical resolution of Optimal Control problems. Here the maximization of the Hamiltonian can be carried out with an extremely low computational effort, owing to the linear dependence of the system in the control variables.
翻译:在本文中,我们提出一个深学习结构,以将二异形对立面与身份相近。我们考虑一个在控制中线性依赖的以 $\dot x =\ sum ⁇ i=1 ⁇ lF_i(x)u_i$为单位的控制系统。我们使用相应的流程,以近似二异形对齐点的动作。尽管控制系统简单,但最近已经显示,一个通用近似属性存在。最大限度地减少培训错误和常规化术语的总和的问题导致可接受控制空间的梯度流动。离散时神经网络可能的培训程序包括将梯度流投射到可接受控制的一个有限维次空间。另一种方法依赖于基于Pontryagin 最大原则的迭接方法,用于最佳控制问题的数字解析。在这里,由于系统在控制变量中的线性依赖性,可实现汉密尔顿人的最大最大化。在这里,可以以极低的计算努力进行。