There are many processes, particularly dynamic systems, that cannot be described as strong mixing processes. \citet{maume2006exponential} introduced a new mixing coefficient called C-mixing, which includes a large class of dynamic systems. Based on this, \citet{hang2017bernstein} obtained a Bernstein-type inequality for a geometric C-mixing process, which, modulo a logarithmic factor and some constants, coincides with the standard result for the iid case. In order to honor this pioneering work, we conduct follow-up research in this paper and obtain an improved result under more general preconditions. We allow for a weaker requirement for the semi-norm condition, fully non-stationarity, non-isotropic sampling behavior. Our result covers the case in which the index set of processes lies in $\mathbf{Z}^{d+}$ for any given positive integer $d$. Here $\mathbf{Z}^{d+}$ denotes the collection of all nonnegative integer-valued $d$-dimensional vector. This setting of index set takes both time and spatial data into consideration. For our application, we investigate the theoretical guarantee of multiple kernel-based nonparametric curve estimators for C-Mixing-type processes. More specifically we firstly obtain the $L^{\infty}$-convergence rate of the kernel density estimator and then discuss the attainability of optimality, which can also be regarded as an upate of the result of \citet{hang2018kernel}. Furthermore, we investigate the uniform convergence of the kernel-based estimators of the conditional mean and variance function in a heteroscedastic nonparametric regression model. Under a mild smoothing condition, these estimators are optimal. At last, we obtain the uniform convergence rate of conditional mode function.
翻译:有许多进程, 特别是动态系统, 无法被描述为强大的混合进程 。 { citet{ maume2006explential} 引入了名为 C 混合的新混合系数, 其中包括一大批动态系统。 基于此,\ citet{ hang2017bernstein} 获得了一个伯恩斯坦式的不平等, 用于几何 C混合进程, 以对数计算一个对数系数和一些常数, 与iid 案例的标准结果相吻合。 为了纪念这一开创性工作, 我们在本纸上进行后续研究, 并在更普遍的前提条件下取得更好的结果。 我们允许对半北调状态、 完全不固定状态、 非色态取样行为的行为。 我们的结果包括: 任何给定的正整数的对数的指数设置为$; 以美元为基础的, 以美元为基底调, 表示所有非负值的正值 美元矢量的硬度变量的收集结果。 本次设定的指数的正平面值的正向下, 将我们获取一个不固定的正态的正态的正态的正态数据 。