Glass transitions are widely observed in various types of soft matter systems. However, the physical mechanism of these transitions remains {elusive}, despite years of ambitious research. In particular, an important unanswered question is whether the glass transition is accompanied by a divergence of the correlation lengths of the characteristic static structures. In this study, we develop a deep-neural-network-based method that is used to extract the characteristic local meso-structures solely from instantaneous {particle} configurations without any {information} about the dynamics. We first train a neural network to classify configurations of liquids and glasses correctly. Then, we obtain the characteristic structures by quantifying the grounds for the decisions made by the network using Gradient-weighted Class Activation Mapping (Grad-CAM). We considered two qualitatively different glass-forming binary systems, and through comparisons with several established structural indicators, we demonstrate that our system can be used to identify characteristic structures that depend on the details of the systems. Moreover, the extracted structures are remarkably correlated with the nonequilibrium aging dynamics in thermal fluctuations.
翻译:在各种类型的软质系统中广泛观测到玻璃的转变。 然而,这些转变的物理机制尽管进行了多年的雄心勃勃的研究,但仍然保持 {elusive} 。 特别是,一个重要的未解答的问题是, 玻璃转变是否伴之以特征静态结构的关联长度差异。 在这项研究中, 我们开发了一种深神经网络方法, 仅用瞬时 {particle} 配置来提取本地特有的中间结构, 却没有任何关于动态的信息 。 我们首先训练了一个神经网络, 对液体和眼镜的配置进行正确分类 。 然后, 我们通过量化网络使用 梯度加权分级活动映射( Grad- CAM) 做出决策的理由来获取特征结构 。 我们考虑了两种质量不同的玻璃成型二进制系统, 并通过与若干既定的结构指标进行比较, 我们证明我们的系统可以用来确定取决于系统细节的特征结构。 此外, 提取的结构与热波波动中无线调节的动态非常相关。