Most of the Brain-Computer Interface (BCI) publications, which propose artificial neural networks for Motor Imagery (MI) Electroencephalography (EEG) signal classification, are presented using one of the BCI Competition datasets. However, these databases contain MI EEG data from less than or equal to 10 subjects . In addition, these algorithms usually include only bandpass filtering to reduce noise and increase signal quality. In this article, we compared 5 well-known neural networks (Shallow ConvNet, Deep ConvNet, EEGNet, EEGNet Fusion, MI-EEGNet) using open-access databases with many subjects next to the BCI Competition 4 2a dataset to acquire statistically significant results. We removed artifacts from the EEG using the FASTER algorithm as a signal processing step. Moreover, we investigated whether transfer learning can further improve the classification results on artifact filtered data. We aimed to rank the neural networks; therefore, next to the classification accuracy, we introduced two additional metrics: the accuracy improvement from chance level and the effect of transfer learning. The former can be used with different class-numbered databases, while the latter can highlight neural networks with sufficient generalization abilities. Our metrics showed that the researchers should not avoid Shallow ConvNet and Deep ConvNet because they can perform better than the later published ones from the EEGNet family.
翻译:大部分脑-计算机界面(BCI)出版物建议为汽车成像(MI)电动脑光学(EEEG)信号分类提供人工神经网络,这些出版物使用BCI竞争数据集之一进行展示,但这些数据库包含MIEEG数据,从少于或等于10个主题。此外,这些算法通常只包括带式过滤器,以减少噪音和提高信号质量。在本篇文章中,我们比较了5个著名的神经网络(Shallow ConvNet、Deep CondNet、EEEGNetNet、EEEGNet Fusion、MI-EEGNet),使用开放访问数据库,该数据库与BCI竞争4 2a数据集旁边有许多主题,以获取具有统计意义的重要结果。我们用FASTER算法从EEEEEEG中移除了文物,作为信号处理步骤。此外,我们调查了转移学习是否能进一步改进人工制品过滤数据的分类结果。我们的目标是对神经网络进行排序;因此,除了分类准确性评估之外,我们还采用了另外两种衡量尺度:从机会提高准确性水平,转移效果的效果是学习效果。前可以使用不同级网络,因为先用不同的CEVER数据库,而后可以使用。