The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of $n$ equal disks packed into a rectangle and integers $k$ and $h$, we ask whether it is possible by changing positions of at most $h$ disks to pack $n+k$ disks. Thus the problem of packing equal disks is the special case of our problem with $n=h=0$. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for $h=0$. Our main algorithmic contribution is an algorithm that solves the repacking problem in time $(h+k)^{O(h+k)}\cdot |I|^{O(1)}$, where $I$ is the input size. That is, the problem is fixed-parameter tractable parameterized by $k$ and $h$.
翻译:将相等的磁盘( 圆圈) 包装成矩形的问题是一个根本性的几何问题。 (这里的包装是指在矩形和整数中将磁盘安排成一个不重叠的矩形。 ) 我们考虑对等的磁盘包装问题进行以下的算法概括化。 在这个问题中, 将相等的磁盘包装成一个矩形的问题, 我们的问题是, 是否通过改变少量磁盘的位置来分配空间来包装更多的磁盘。 在重新包装问题中, 更正式地说, 将一组美元相等的磁盘包装成一个矩形和整数, 美元和美元。 我们的主要算法贡献是, 最多以$+k美元来包装磁盘。 因此, 将相等的磁盘包装成一个特殊的例子。 将相同的磁盘包装成一个矩形的计算复杂性仍然开放, 我们证明重新包装的问题( NP- 硬) 美元=0美元。 我们的主要算法贡献是用一个固定的算法, 美元=_ 美元 和 RO 格式 的折号 。