We consider the allocation of $m$ balls (jobs) into $n$ bins (servers). In the standard Two-Choice process, at each step $t=1,2,\ldots,m$ we first sample two randomly chosen bins, compare their two loads and then place a ball in the least loaded bin. It is well-known that for any $m\geq n$, this results in a gap (difference between the maximum and average load) of $\log_2\log n+\Theta(1)$ (with high probability). In this work, we consider Two-Choice in different settings with noisy load comparisons. One key setting involves an adaptive adversary whose power is limited by some threshold $g\in\mathbb{N}$. In each step, such adversary can determine the result of any load comparison between two bins whose loads differ by at most $g$, while if the load difference is greater than $g$, the comparison is correct. For this adversarial setting, we first prove that for any $m \geq n$ the gap is $O(g+\log n)$ with high probability. Then through a refined analysis we prove that if $g\leq\log n$, then for any $m \geq n$ the gap is $O(\frac{g}{\log g}\cdot\log\log n)$. For constant values of $g$, this generalizes the heavily loaded analysis of [BCSV06, TW14] for the Two-Choice process, and establishes that asymptotically the same gap bound holds even if load comparisons among "similarly loaded" bins are wrong. Finally, we complement these upper bounds with tight lower bounds, which establish an interesting phase transition on how the parameter $g$ impacts the gap. The analysis also applies to settings with outdated and delayed information. For example, for the setting of [BCEFN12] where balls are allocated in consecutive batches of size $b=n$, we present an improved and tight gap bound of $\Theta(\frac{\log n}{\log\log n})$. This bound also extends for a range of values of $b$ and applies to a relaxed setting where the reported load of a bin can be any load value from the last $b$ steps.


翻译:我们考虑将球( njobs) 分配为 $n bins (servers) 。 在标准 2Cice 过程中, 每一步我们先抽样两个随机选择的文件夹, 比较其两个装载量, 然后将球放入最不装入的文件夹中。 众所周知, 对于任何 $12\ gq n 美元, 这会导致一个差距( 最大和平均负荷之间的差异) $g_ 2\ log n_ 秒( 概率很高 ) 。 在这项工作中, 我们考虑在不同设置中双焦值 美元 = 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,2, 4,2,,,,2,2, 4, 4, 4, 4, 4, 4, 4, 4,2, 4,2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,2,2,2,,,,, 4,2,2, 4, 4,2,2,2,2,2, 4,2,2,2,2,

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On the Fusion Strategies for Federated Decision Making
Arxiv
64+阅读 · 2021年6月18日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员