The advent of high-throughput sequencing technologies has lead to vast comparative genome sequences. The construction of gene-gene interaction networks or dependence graphs on the genome scale is vital for understanding the regulation of biological processes. Different dependence graphs can provide different information. Some existing methods for dependence graphs based on high-order partial correlations are sparse and not informative when there are latent variables that can explain much of the dependence in groups of genes. Other methods of dependence graphs based on correlations and first-order partial correlations might have dense graphs. When genes can be divided into groups with stronger within group dependence in gene expression than between group dependence, we present a dependence graph based on truncated vines with latent variables that makes use of group information and low-order partial correlations. The graphs are not dense, and the genes that might be more central have more neighbors in the vine dependency graph. We demonstrate the use of our dependence graph construction on two RNA-seq data sets -- yeast and prostate cancer. There is some biological evidence to support the relationship between genes in the resulting dependence graphs. A flexible framework is provided for building dependence graphs via low-order partial correlations and formation of groups, leading to graphs that are not too sparse or dense. We anticipate that this approach will help to identify groups that might be central to different biological functions.


翻译:高通量测序技术的出现导致大量可比基因组序列。在基因组规模上构建基因基因基因基因-基因互动网络或依赖图对于了解生物过程的监管至关重要。不同的依赖图可以提供不同的信息。基于高序部分关联的某些现有依赖图方法稀少,当有潜在变量可以解释基因群中许多依赖性时,则不提供信息。基于相关性和一级部分关联的其他依赖图方法可能具有密度的图形。当基因可以分为群体内对基因表现依赖性大于群体间对群体依赖性的组群时,我们以短葡萄藤和潜在变量为基础的依赖图,这些变量使用群体信息,而低序部分关联性部分关联性则提供不同。这些图表不密度,而且可能更为核心的基因在葡萄依赖图中有更多的相邻点。我们展示了两个 RNA - 等量数据集 -- 酵母和前列腺癌 -- -- 的依赖性图中的依赖性图表结构。在基因表达方式中,有一些生物证据可以支持基因在组组内比群体对基因依赖性之间形成更强的组群系,因此,我们展示了一个依赖性图表。一个基于短葡萄藤根的图的依的图,而具有弹性框架,而我们通过低级的预测,通过低级的模型来进行深度的模型来预测性分析,我们可以预测性地预测,而不会通过低序成成为深度的模型进行深度的模型,从而形成一个不易成成。我们为深度的模型。我们对等的模型。我们提供的模型,通过低位。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
19+阅读 · 2020年7月13日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员