In this paper, we give a spectral approximation result for the Laplacian on submanifolds of Euclidean spaces with singularities by the $\epsilon$-neighborhood graph constructed from random points on the submanifold. Our convergence rate for the eigenvalue of the Laplacian is $O\left(\left(\log n/n\right)^{1/(m+2)}\right)$, where $m$ and $n$ denote the dimension of the manifold and the sample size, respectively.
翻译:在本文中,我们给出了欧洲极地空间的极值下皮面上的拉普拉西亚人的光谱近似值,用以该亚皮面上的随机点构造的 $\ epsilon$- neighborhood 图形来表示。我们拉帕拉西亚人电子元值的趋同率是$Oleft(left(\log n/n\right) 1/(m+2)\\\ right)$(m+2)$(right),其中美元和美元分别表示方块和样本大小的大小。