A solution manifold is the collection of points in a $d$-dimensional space satisfying a system of $s$ equations with $s<d$. Solution manifolds occur in several statistical problems including hypothesis testing, curved-exponential families, constrained mixture models, partial identifications, and nonparametric set estimation. We analyze solution manifolds both theoretically and algorithmically. In terms of theory, we derive five useful results: the smoothness theorem, the stability theorem (which implies the consistency of a plug-in estimator), the convergence of a gradient flow, the local center manifold theorem and the convergence of the gradient descent algorithm. To numerically approximate a solution manifold, we propose a Monte Carlo gradient descent algorithm. In the case of likelihood inference, we design a manifold constraint maximization procedure to find the maximum likelihood estimator on the manifold. We also develop a method to approximate a posterior distribution defined on a solution manifold.
翻译:溶解元数是用美元维度空间收集点数,满足美元方程式和美元元值的系统。溶解元数出现在几个统计问题中,包括假设测试、曲线-耗尽家庭、受限混合模型、部分识别和非参数集估计。我们从理论上和逻辑上分析了多种解决办法。从理论上讲,我们得出五个有用的结果:平稳的定理、稳定性的定理(这意味着插座的一致性)、梯度流的汇合、局部中心方程式和梯度下沉算法的汇合。我们建议用一个数值大致的解算公式。在推断可能性的情况下,我们设计一个多重制约最大化算法,以找到公式上的最大可能的估计值。我们还开发了一种方法,以估计一个公式上定义的多元的后方分布。