Performing exact Bayesian inference for complex models is computationally intractable. Markov chain Monte Carlo (MCMC) algorithms can provide reliable approximations of the posterior distribution but are expensive for large datasets and high-dimensional models. A standard approach to mitigate this complexity consists in using subsampling techniques or distributing the data across a cluster. However, these approaches are typically unreliable in high-dimensional scenarios. We focus here on a recent alternative class of MCMC schemes exploiting a splitting strategy akin to the one used by the celebrated alternating direction of multipliers (ADMM) optimization algorithm. These methods appear to provide empirically state-of-the-art performance but their theoretical behavior in high dimension is currently unknown. In this paper, we propose a detailed theoretical study of one of these algorithms known as the split Gibbs sampler. Under regularity conditions, we establish explicit convergence rates for this scheme using Ricci curvature and coupling ideas. We support our theory with numerical illustrations.
翻译:对复杂模型进行精确的贝叶斯推断是难以计算出来的。 Markov 链链 Monte Carlo( MCMC) 算法可以提供后方分布的可靠近似值, 但对于大型数据集和高维模型来说却非常昂贵。 减轻这一复杂性的标准方法包括使用子抽样技术或将数据分布在组群中。 但是, 在高维假设中,这些方法通常不可靠。 我们在这里集中关注最近一类的MCMC计划, 利用类似于倍数( ADMMM) 优化算法的已知交替方向所使用的分解策略。 这些方法似乎提供了实验性的最新性表现, 但其高维度的理论行为目前还不得而知。 在本文中, 我们提议对其中一种被称为分裂 Gibs 采样器的算法进行详细的理论研究。 在常规条件下, 我们使用 Ricci curvature 和 组合思想为这个计划建立明确的趋同率。 我们用数字说明来支持我们的理论 。