When the regression function belongs to the standard smooth classes consisting of univariate functions with derivatives up to the $(\gamma+1)$th order bounded by a common constant everywhere or a.e., it is well known that the minimax optimal rate of convergence in mean squared error (MSE) is $\left(\frac{\sigma^{2}}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ when $\gamma$ is finite and the sample size $n\rightarrow\infty$. From a nonasymptotic viewpoint that considers finite $n$, this paper shows that: for the standard H\"older and Sobolev classes, the minimax optimal rate is $\frac{\sigma^{2}\left(\gamma\vee1\right)}{n}$ when $\frac{n}{\sigma^{2}}\precsim\left(\gamma\vee1\right)^{2\gamma+3}$ and $\left(\frac{\sigma^{2}}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ when $\frac{n}{\sigma^{2}}\succsim\left(\gamma\vee1\right)^{2\gamma+3}$. To establish these results, we derive upper and lower bounds on the covering and packing numbers for the generalized H\"older class where the $k$th ($k=0,...,\gamma$) derivative is bounded from above by a parameter $R_{k}$ and the $\gamma$th derivative is $R_{\gamma+1}-$Lipschitz (and also for the generalized ellipsoid class of smooth functions). Our bounds sharpen the classical metric entropy results for the standard classes, and give the general dependence on $\gamma$ and $R_{k}$. By deriving the minimax optimal MSE rates under $R_{k}=1$, $R_{k}\leq\left(k-1\right)!$ and $R_{k}=k!$ (with the latter two cases motivated in our introduction) with the help of our new entropy bounds, we show a couple of interesting results that cannot be shown with the existing entropy bounds in the literature. For the H\"older class of $d-$variate functions, our result suggests that the classical asymptotic rate $\left(\frac{\sigma^{2}}{n}\right)^{\frac{2\gamma+2}{2\gamma+2+d}}$ could be an underestimate of the MSE in finite samples.


翻译:当回归函数属于标准的平滑类 。 当$\ gamma+2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\S\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Improved Compression of the Okamura-Seymour Metric
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月9日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员