In this article, we provide the first systematic analysis of bent functions $f$ on $\mathbb{F}_2^{n}$ in the Maiorana-McFarland class $\mathcal{MM}$ regarding the origin and cardinality of their $\mathcal{M}$-subspaces, i.e., vector subspaces on which the second-order derivatives of $f$ vanish. By imposing restrictions on permutations $\pi$ of $\mathbb{F}_2^{n/2}$, we specify the conditions, such that Maiorana-McFarland bent functions $f(x,y)=x\cdot \pi(y) + h(y)$ admit a unique $\mathcal{M}$-subspace of dimension $n/2$. On the other hand, we show that permutations $\pi$ with linear structures give rise to Maiorana-McFarland bent functions that do not have this property. In this way, we contribute to the classification of Maiorana-McFarland bent functions, since the number of $\mathcal{M}$-subspaces is invariant under equivalence. Additionally, we give several generic methods of specifying permutations $\pi$ so that $f\in\mathcal{MM}$ admits a unique $\mathcal{M}$-subspace. Most notably, using the knowledge about $\mathcal{M}$-subspaces, we show that using the bent 4-concatenation of four suitably chosen Maiorana-McFarland bent functions, one can in a generic manner generate bent functions on $\mathbb{F}_2^{n}$ outside the completed Maiorana-McFarland class $\mathcal{MM}^\#$ for any even $n\geq 8$. Remarkably, with our construction methods it is possible to obtain inequivalent bent functions on $\mathbb{F}_2^8$ not stemming from two primary classes, the partial spread class $\mathcal{PS}$ and $\mathcal{MM}$. In this way, we contribute to a better understanding of the origin of bent functions in eight variables, since only a small fraction, of which size is about $2^{76}$, stems from $\mathcal{PS}$ and $\mathcal{MM}$, whereas the total number of bent functions on $\mathbb{F}_2^8$ is approximately $2^{106}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月9日
Arxiv
0+阅读 · 2023年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员