In this paper we consider the generalized Radon transform $\mathcal R$ in the plane. Let $f$ be a piecewise smooth function, which has a jump across a smooth curve $\mathcal S$. We obtain a formula, which accurately describes view aliasing artifacts away from $\mathcal S$ when $f$ is reconstructed from the data $\mathcal R f$ discretized in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate $\epsilon\to0$. The proposed approach does not require that $f$ be band-limited. Numerical experiments with the classical Radon transform and generalized Radon transform (which integrates over circles) demonstrate the accuracy of the formula.
翻译:暂无翻译