The inverted residual block is dominating architecture design for mobile networks recently. It changes the classic residual bottleneck by introducing two design rules: learning inverted residuals and using linear bottlenecks. In this paper, we rethink the necessity of such design changes and find it may bring risks of information loss and gradient confusion. We thus propose to flip the structure and present a novel bottleneck design, called the sandglass block, that performs identity mapping and spatial transformation at higher dimensions and thus alleviates information loss and gradient confusion effectively. Extensive experiments demonstrate that, different from the common belief, such bottleneck structure is more beneficial than the inverted ones for mobile networks. In ImageNet classification, by simply replacing the inverted residual block with our sandglass block without increasing parameters and computation, the classification accuracy can be improved by more than 1.7% over MobileNetV2. On Pascal VOC 2007 test set, we observe that there is also 0.9% mAP improvement in object detection. We further verify the effectiveness of the sandglass block by adding it into the search space of neural architecture search method DARTS. With 25% parameter reduction, the classification accuracy is improved by 0.13% over previous DARTS models. Code can be found at: https://github.com/zhoudaquan/rethinking_bottleneck_design.


翻译:倒置残余区块最近正在主导移动网络的建筑设计。 它通过引入两个设计规则来改变经典残余瓶颈。 学习倒置残余并使用线性瓶颈。 在本文中, 我们重新思考这些设计变化的必要性, 并发现它可能会带来信息丢失和梯度混乱的风险。 因此, 我们提议翻转结构, 并推出一个新的瓶颈设计, 叫做沙玻璃区块, 在更高的维度上进行身份测绘和空间转换, 从而有效减轻信息丢失和梯度混乱。 广泛的实验表明, 不同于通常的信念, 这种瓶颈结构比移动网络的倒置结构更有益。 在图像网络分类中, 只要在不增加参数和计算的情况下用我们的沙玻璃区取代倒置残余区块, 分类准确度可以比移动NetV2 高出1. 7% 以上。 在Pascal VOC 2007 测试集中, 我们观察到, 在物体探测方面还有0. 0. 9% mAP 的改进。 我们进一步核查沙质区块的有效性, 将其添加到神经架构搜索空间 DARTS。 在减少 25 % 参数时, 将 amb_ adstrainb_ mab_ max_ max lax max lax lax lax lax lax lax lax

0
下载
关闭预览

相关内容

【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
37+阅读 · 2020年2月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
7+阅读 · 2020年3月30日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
8+阅读 · 2018年11月21日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
7+阅读 · 2020年3月30日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
8+阅读 · 2018年11月21日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员