In this work, we introduced a class of nonlocal models to accurately approximate the Poisson model on manifolds that are embedded in high dimensional Euclid spaces with Dirichlet boundary. In comparison to the existing nonlocal Poisson models, instead of utilizing volumetric boundary constraint to reduce the truncation error to its local counterpart, we rely on the Poisson equation itself along the boundary to explicitly express the second order normal derivative by some geometry-based terms, so that to create a new model with $\mathcal{O}(\delta)$ truncation error along the $2\delta-$boundary layer and $\mathcal{O}(\delta^2)$ at interior, with $\delta$ be the nonlocal interaction horizon. Our concentration is on the construction and the truncation error analysis of such nonlocal model. The control on the truncation error is currently optimal among all nonlocal models, and is sufficient to attain second order localization rate that will be derived in our subsequent work.
翻译:在这项工作中,我们引入了一组非本地模型,以精确地估计位于Drichlet边界高维欧里特空间内嵌入的方块的 Poisson 模型。与现有的非本地 Poisson 模型相比,我们没有利用体积边界限制来减少其本地对应方的脱轨错误,而是依靠边界沿线的Poisson 方程式本身,以某些基于几何的术语来明确表达第二顺序正常衍生物,从而在所有非本地模型中创建一个新的模型,使用$\mathcal{O}(\delta)$( truncation $) 和$\mathcal{O}(delta}) 美元在内部生成,而$\delta$是非本地互动地平线。我们的重点是这种非本地模型的构造和脱轨错误分析。目前对所有非本地模型来说,对脱轨错误的控制是最佳的,足以实现将在我们随后工作中得出的第二顺序本地化率。</s>