The Extended Randomized Kaczmarz method is a well known iterative scheme which can find the Moore-Penrose inverse solution of a possibly inconsistent linear system and requires only one additional column of the system matrix in each iteration in comparison with the standard randomized Kaczmarz method. Also, the Sparse Randomized Kaczmarz method has been shown to converge linearly to a sparse solution of a consistent linear system. Here, we combine both ideas and propose an Extended Sparse Randomized Kaczmarz method. We show linear expected convergence to a sparse least squares solution in the sense that an extended variant of the regularized basis pursuit problem is solved. Moreover, we generalize the additional step in the method and prove convergence to a more abstract optimization problem. We demonstrate numerically that our method can find sparse least squares solutions of real and complex systems if the noise is concentrated in the complement of the range of the system matrix and that our generalization can handle impulsive noise.


翻译:扩展随机卡茨马尔兹法是一种众所周知的迭代办法,它可以找到一个可能不一致的线性系统的摩尔-彭罗斯反向解决方案,并且只要求与标准随机卡茨马尔兹法相比,每迭代中系统矩阵增加一列。此外,Sparse随机卡茨马尔兹法被证明线性地趋同到一个一致线性系统的稀薄解决方案。在这里,我们合并了两个想法并提出扩展的松散随机卡茨马尔兹法。我们显示线性预期会趋同到一个稀薄的最小方形解决方案,因为常规基础追踪问题的扩展变量已经解决。此外,我们把方法中的额外步骤概括化,并证明与更抽象的优化问题趋同。我们从数字上表明,如果噪音集中在系统矩阵的范围之外,我们的方法可以找到真正和复杂的系统稀少的最小方形解决方案。我们一般化的方法可以处理无线性噪音。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员